Пашена - Бака эффект - определение. Что такое Пашена - Бака эффект
Diclib.com
Словарь ChatGPT
Введите слово или словосочетание на любом языке 👆
Язык:

Перевод и анализ слов искусственным интеллектом ChatGPT

На этой странице Вы можете получить подробный анализ слова или словосочетания, произведенный с помощью лучшей на сегодняшний день технологии искусственного интеллекта:

  • как употребляется слово
  • частота употребления
  • используется оно чаще в устной или письменной речи
  • варианты перевода слова
  • примеры употребления (несколько фраз с переводом)
  • этимология

Что (кто) такое Пашена - Бака эффект - определение

Эффект Пашена-Бака; Пашена — Бака эффект; Пашена - Бака эффект
Найдено результатов: 450
Пашена - Бака эффект         

эффект, состоящий в том, что в сильных магнитных полях сложное зеемановское расщепление спектральных линий переходит в простое (см. Зеемана эффект). Сильными следует считать магнитные поля, вызывающие зеемановское расщепление, сравнимое с мультиплетным расщеплением уровней энергии (см. Мультиплетность) и превосходящее его. В таких полях и происходит упрощение картины расщепления - вместо сложной картины наблюдается расщепление на 3 составляющие. П. - Б. э. впервые обнаружили немецкие физики Ф. Пашен (См. Пашня) и Э. Бак (Е. Back) в 1912.

Лит. см. при ст. Зеемана эффект.

Эффект ПашенаБака         
Эффект Пашена — Бака состоит в том, что в сильных магнитных полях сложное зеемановское расщепление переходит в простое. Открыт Фридрихом Пашеном и Эрнстом Баком в 1912 году.
Пашена закон         

устанавливает, что наименьшее напряжение зажигания газового разряда между двумя плоскими электродами (в однородном электрическом поле) есть величина постоянная (и характерная для данного газа) при одинаковых значениях pd, где р - давление газа, d - расстояние между электродами. Сформулирован Ф. Пашеном в 1889. П. з.- частный случай закона подобия газовых разрядов: явления в разряде протекают одинаково, если произведение давления газа на длину разрядного промежутка остаётся величиной постоянной, а форма промежутка сохраняется геометрически подобной исходной. П. з. является приближённым; он оправдывается на опыте с тем большей точностью, чем меньше р и d. См. также Зажигания потенциал.

Лит. см. при ст. Электрический разряд (См. Электрический разряд в газах).

бака         
СТРАНИЦА ЗНАЧЕНИЙ
Бака (значения); Бака (язык)
жен., ·*яросл. насекомое стрекоза, коромысел.
| ·*пермяц. древесная губка, трут.
ПАРНИКОВЫЙ ЭФФЕКТ         
  • Прозрачность атмосферы Земли в видимом и инфракрасном диапазонах (поглощение и рассеивание):<br>
1. Интенсивность солнечного излучения (слева) и инфракрасного излучения поверхности Земли (справа) — даны спектральные интенсивности без учёта и с учётом поглощения<br>
2. Суммарное поглощение и рассеивание в атмосфере в зависимости от длины волны<br>
3. Спектры поглощения различных парниковых газов и [[рэлеевское рассеяние]].
  • Климатические индикаторы за последние 0,5 млн лет: изменение уровня океана (синий), концентрация <sup>18</sup>O в морской воде, концентрация CO<sub>2</sub> в антарктическом льду. Деление временной шкалы — 20 000 лет. Пики уровня моря, концентрации CO<sub>2</sub> и минимумы <sup>18</sup>O совпадают с межледниковыми температурными максимумами.
ПОВЫШЕНИЕ ТЕМПЕРАТУРЫ НИЖНИХ СЛОЁВ АТМОСФЕРЫ ПЛАНЕТЫ ПО СРАВНЕНИЮ С ЭФФЕКТИВНОЙ ТЕМПЕРАТУРОЙ
Оранжерейный эффект; Тепличный эффект
(оранжерейный эффект) в атмосферах планет , нагрев внутренних слоев атмосферы (Земли, Венеры и других планет с плотными атмосферами), обусловленный прозрачностью атмосферы для основной части излучения Солнца (в оптическом диапазоне) и поглощением атмосферой основной (инфракрасной) части теплового излучения поверхности планеты, нагретой Солнцем. В атмосфере Земли излучение поглощается молекулами Н2О, СО2, О3 и др. Парниковый эффект повышает среднюю температуру планеты, смягчает различия между дневными и ночными температурами. В результате антропогенных воздействий содержание СО2 (и других газов, поглощающих в инфракрасном диапазоне) в атмосфере Земли постепенно возрастает. Не исключено, что усиление парникового эффекта в результате этого процесса может привести к глобальным изменениям климата Земли.
ОРАНЖЕРЕЙНЫЙ ЭФФЕКТ         
  • Прозрачность атмосферы Земли в видимом и инфракрасном диапазонах (поглощение и рассеивание):<br>
1. Интенсивность солнечного излучения (слева) и инфракрасного излучения поверхности Земли (справа) — даны спектральные интенсивности без учёта и с учётом поглощения<br>
2. Суммарное поглощение и рассеивание в атмосфере в зависимости от длины волны<br>
3. Спектры поглощения различных парниковых газов и [[рэлеевское рассеяние]].
  • Климатические индикаторы за последние 0,5 млн лет: изменение уровня океана (синий), концентрация <sup>18</sup>O в морской воде, концентрация CO<sub>2</sub> в антарктическом льду. Деление временной шкалы — 20 000 лет. Пики уровня моря, концентрации CO<sub>2</sub> и минимумы <sup>18</sup>O совпадают с межледниковыми температурными максимумами.
ПОВЫШЕНИЕ ТЕМПЕРАТУРЫ НИЖНИХ СЛОЁВ АТМОСФЕРЫ ПЛАНЕТЫ ПО СРАВНЕНИЮ С ЭФФЕКТИВНОЙ ТЕМПЕРАТУРОЙ
Оранжерейный эффект; Тепличный эффект
то же, что парниковый эффект.
Эффект аудитории         
Эффе́кт аудито́рии (эффе́кт За́йонца, эффе́кт фасилита́ции) — влияние постороннего присутствия на поведение человека. Этот эффект необходимо учитывать при проведении, к примеру, психологических исследований: эффект аудитории можно рассматривать как один из факторов, угрожающих внутренней валидности.
Парниковый эффект         
  • Прозрачность атмосферы Земли в видимом и инфракрасном диапазонах (поглощение и рассеивание):<br>
1. Интенсивность солнечного излучения (слева) и инфракрасного излучения поверхности Земли (справа) — даны спектральные интенсивности без учёта и с учётом поглощения<br>
2. Суммарное поглощение и рассеивание в атмосфере в зависимости от длины волны<br>
3. Спектры поглощения различных парниковых газов и [[рэлеевское рассеяние]].
  • Климатические индикаторы за последние 0,5 млн лет: изменение уровня океана (синий), концентрация <sup>18</sup>O в морской воде, концентрация CO<sub>2</sub> в антарктическом льду. Деление временной шкалы — 20 000 лет. Пики уровня моря, концентрации CO<sub>2</sub> и минимумы <sup>18</sup>O совпадают с межледниковыми температурными максимумами.
ПОВЫШЕНИЕ ТЕМПЕРАТУРЫ НИЖНИХ СЛОЁВ АТМОСФЕРЫ ПЛАНЕТЫ ПО СРАВНЕНИЮ С ЭФФЕКТИВНОЙ ТЕМПЕРАТУРОЙ
Оранжерейный эффект; Тепличный эффект
Парнико́выйЕлисеев А. В., Мохов И. И. ПАРНИКОВЫЙ ЭФФЕКТ // Большая российская энциклопедия. Том 25. Москва, 2014, стр. 368 или оранжерейный или тепличный эффе́кт
ШОТТКИ ЭФФЕКТ         
рост тока электронной эмиссии с поверхности твердого тела под действием электрического поля, ускоряющего электроны (уменьшающего работы выхода). Назван по имени немецкого физика В. Шоттки.
Шотки эффект         

уменьшение работы выхода (См. Работа выхода) электронов из твёрдых тел под действием внешнего ускоряющего их электрического поля. Ш. э. проявляется в росте тока насыщения термоэлектронной эмиссии (См. Термоэлектронная эмиссия), в уменьшении энергии поверхностной ионизации (см. Ионная эмиссия) и в сдвиге порога фотоэлектронной эмиссии (См. Фотоэлектронная эмиссия) в сторону бо́льших длин волн λ Ш. э. возникает в полях Е, достаточных для рассасывания пространств. заряда у поверхности эмиттера (Е Шотки эффект 10 -100 всм―1), и существен до полей Е Шотки эффект 106 в. см―1. При Е > 107 всм―1 начинает преобладать просачивание электронов сквозь потенциальный барьер на границе тела (Туннельная эмиссия).

Классическая теория Ш. э. для металлов создана немецким учёным В. Шотки (1914). Из-за большой электропроводности металла силовые линии электрического поля перпендикулярны его поверхности. Поэтому электрон с зарядом -е, находящийся на расстоянии х > а (а - межатомное расстояние) от поверхности, взаимодействует с ней так, как если бы он индуцировал в металле на глубине х своё "электрическое изображение", т. е. заряд +е. Сила их притяжения:

(1)

o - Диэлектрическая проницаемость вакуума), потенциал этой силы (φ э. и. = -е/16πεох. Внешнее электрическое поле уменьшает φ э. и. на величину Е. х (см. рис.); на границе металл - вакуум появляется потенциальный барьер с вершиной при х = хм =. При E ≤ 5.106в. см―1 xm ≥ 8Å. Уменьшение работы выхода Φ за счёт действия поля равно: , например при Е = 105в. см―1 ΔΦ = 0,12 эв и хм=60 Å. В результате Ш. э. j экспоненциально возрастает от jo до , где к - Больцмана постоянная, а частотный порог фотоэмиссии сдвигается на величину:

. (2)

В случае, когда эмиттирующая поверхность неоднородна и на ней имеются "пятна" с различной работой выхода, над её поверхностью возникает электрическое поле "пятен". Это поле тормозит электроны, вылетающие из участков катода с меньшей, чем у соседних, работой выхода. Внешнее электрическое поле складывается с полем пятен и, возрастая, устраняет тормозящее действие последнего. Вследствие этого эмиссионный ток из неоднородного эмиттера растет при увеличении E быстрее, чем в случае однородного эмиттера (аномальный Ш. э.).

Влияние электрического поля на эмиссию электронов из полупроводников (См. Полупроводники) белее сложно. Электрическое поле проникает в них на бо́льшую глубину (от сотен до десятков тысяч атомных слоев). Поэтому заряд, индуцированный эмиттированным электроном, расположен не на поверхности, а в слое толщиной порядка радиуса экранирования rэ. Для х > rэ справедлива формула (1), но для полей Е во много раз меньших, чем у металлов (ЕШотки эффект102-104 в/см). Кроме того, внешнее электрическое поле, проникая в полупроводник, вызывает в нём перераспределение зарядов, что приводит к дополнительному уменьшению работы выхода. Обычно, однако, на поверхности полупроводников имеются поверхностные электронные состояния. При достаточной их плотности (Шотки эффект1013 см―2) находящиеся в них электроны экранируют внешнее поле. В этом случае (если заполнение и опустошение поверхностных состояний под действием поля вылетающего электрона происходит достаточно быстро) Ш. э. такой же, как и в металлах. Ш. э. имеет место и при протекании тока через контакт металл - полупроводник (см. Шотки барьер, Шотки диод).

Лит.: Schottky W., "Physikalische Zeitschrift", 1914, Bd 15, S. 872; Добрецов Л. Н., Гомоюнова М. В., Эмиссионная электроника, М., 1966; Ненакаливаемые катоды, М., 1974.

Т. М. Лифшиц.

Ф э.и. - потенциальная энергия электрона в поле силы электрического изображения; еЕх - потенциальная энергия электрона во внешнем электрическом поле; Ф - потенциальная энергия электрона вблизи поверхности металла а присутствии внешнего электрического поля: Фм - работа выхода металла; ∆Ф - уменьшение работы выхода под действием внешнего электрического поля; ЕF - уровень Ферми в металле; хм - расстояние от вершины потенциального барьера до поверхности металла; штриховкой показаны заполненные электронные состояния в металле.

Википедия

Эффект Пашена — Бака

Эффект Пашена — Бака состоит в том, что в сильных магнитных полях сложное зеемановское расщепление переходит в простое. Открыт Фридрихом Пашеном и Эрнстом Баком в 1912 году.

Эффект Пашена — Бака наступает, когда напряжённость магнитного поля Н превышает величину, при которой расщепление уровней энергии Δ E = μ B H {\displaystyle \Delta E=\mu _{B}H} (где μ B {\displaystyle \mu _{B}}  — магнетон Бора) становится больше, чем расщепление тонкой структуры. При этом магнитное поле разрушает связь между орбитальным ( L {\displaystyle {\vec {L}}} ) и спиновым ( S {\displaystyle {\vec {S}}} ) моментами. Когда s = 0 {\displaystyle s=0} , эффекты Пашена — Бака и Зеемана эквивалентны.

В условиях нарушения спин-орбитального взаимодействия внешним магнитным полем справедливо предположение [ H 0 , S ] = 0 {\displaystyle [H_{0},S]=0} . Это позволяет легко оценить средние ожидаемые значения L z {\displaystyle L_{z}} и S z {\displaystyle S_{z}} в состоянии | ψ {\displaystyle |\psi \rangle } . Энергии выражаются как

E z = ψ | ( H 0 + B z μ B ( L z + g s S z ) ) | ψ = E 0 + B z μ B ( m l + g s m s ) . {\displaystyle E_{z}=\langle \psi |\left(H_{0}+{\frac {B_{z}\mu _{B}}{\hbar }}(L_{z}+g_{s}S_{z})\right)|\psi \rangle =E_{0}+B_{z}\mu _{B}(m_{l}+g_{s}m_{s}).}

Несмотря на то, что LS-взаимодействие нарушено внешним магнитным полем, квантовые числа m l {\displaystyle m_{l}} и m s {\displaystyle m_{s}} , соответствующие проекциям магнитного и спинового моментов на магнитную ось, остаются "хорошими" квантовыми числами. Вместе с правилами отбора для электрических дипольных переходов, т.е. Δ s = 0 , Δ m s = 0 , Δ l = ± 1 , Δ m l = 0 , ± 1 {\displaystyle \Delta s=0,\Delta m_{s}=0,\Delta l=\pm 1,\Delta m_{l}=0,\pm 1} , это позволяет вообще игнорировать спиновую степень свободы. В результате в спектре остаются видимыми только три спектральные линии, отвечающие дипольному правилу отбора Δ m l = 0 , ± 1 {\displaystyle \Delta m_{l}=0,\pm 1} . Расщепление Δ E = B μ B Δ m l {\displaystyle \Delta E=B\mu _{B}\Delta m_{l}} не зависит от рассматриваемых электронных энергий и конфигураций. В общем случае (когда s 0 {\displaystyle s\neq 0} ), эти три компоненты на самом деле представляют собой группы линий вследствие остаточного спин-орбитального взаимодействия.

В общем случае необходимо, помимо спин-орбитального взаимодействия, ещё учесть релятивистские поправки, которые имеют тот же порядок величины (тонкое расщепление). Теория возмущений первого порядка с этими поправками для атома водорода в пределе Пашена — Бака даёт

E z + f s = E z + α 2 2 n 3 [ 3 4 n ( l ( l + 1 ) m l m s l ( l + 1 / 2 ) ( l + 1 ) ) ] , {\displaystyle E_{z+fs}=E_{z}+{\frac {\alpha ^{2}}{2n^{3}}}\left[{\frac {3}{4n}}-\left({\frac {l(l+1)-m_{l}m_{s}}{l(l+1/2)(l+1)}}\right)\right],}

где α — постоянная тонкой структуры, n — главное квантовое число, а l — орбитальное квантовое число.

Что такое Паш<font color="red">е</font>на - Б<font color="red">а</font>ка эфф<font color="red">е</fo